
 The Foundations of Computing

 1

Draft Version 0.73 — 2014 · June · 1

 1 Introduction
Will computers ever be conscious? Is it appropriate—illumi-
nating, correct, ethical—to understand people in computa-
tional terms? Will quantum, dna, or nanocomputers require
radical adjustments to our theories of computation? How will
computing affect science, the arts, intellectual history?

For most of my life I have been unable to answer these
questions, because I have not known what computation is.
More than thirty years ago, this uncertainty led me to under-
take a long-term investigation of the foundations of computer
science. That study is now largely complete. My aim in this
chapter is to summarize a few of its major results.1

 2 Project
The overall goal has been to develop a comprehensive theory
of computation. Since the outset, I have assumed that such an
account must meet three criteria:

1. Empirical: It must do justice to—by explaining or
providing the wherewithal with which to explain—the
full range of computational practice;

The Foundations of Computing

1. This chapter is distilled from, and is intended to serve as an introduc-
tion to, a series of books that collectively report, in detail, on the investi-
gation identified in section 2. The study of computing will be presented
in The Age of Significance (Smith, forthcoming—henceforth aos); the
metaphysical territory to which that study leads is sketched in On the
Origin of Objects (Smith 1996—henceforth o3).

a1

a2

Brian Cantwell Smith

A
ut

ho
r’

s
co

py

B
ri

an
 C

an
tw

el
l S

m
ith

A

nn
ot

at
io

ns
 in

 p
ro

gr
es

s
br

ia
n.

ca
nt

w
el

l.s
m

ith
@

ut
or

on
to

.c
a

D
ra

ft
 v

er
si

on
 0

.7
3

(c
·0

9)

Ju
ne

 1,
 2

0
14

2

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

2. Conceptual: It must as far as possible discharge, and
at a minimum own up to, its intellectual debts (e.g.,
to semantics), so that we can understand what it says,
where it comes from, and what it “costs”; and

3. Cognitive: It must provide a tenable foundation for
the computational theory of mind: the thesis, often
known as computationalism,2 that underlies traditional
artificial intelligence and cognitive science.

The first, “empirical” requirement, of doing justice to practice,
helps to keep the analysis grounded in real-world examples.
By being comprehensive in scope, it stands guard against the
tendency of narrowly defined candidates to claim dominion
over the whole subject matter.3 And it is humbling, since the
computer revolution so reliably adapts, expands, dodges ex-
pectations, and in general outstrips our theoretical grasp. But
the criterion’s primary advantage is to provide a vantage point
from which to question the legitimacy of all extant theoretical
perspectives. For I take it as a tenet that what Silicon Valley
treats as computational is computational; to deny that would
be considered sufficient grounds for rejection. But no such a
priori commitment is given to any story about computation—
including the widely-held recursion- or Turing-theoretic

2. The same thesis is sometimes referred to as cognitivism, though strictly
speaking the term “cognitivism” denotes a more specific thesis, which
takes mentation to consist in rational deliberation based on patterns
of conceptualist (i.e., “cognitive”) inference, reminiscent of formal logic,
and usually thought to be computationally implemented (see Hauge-
land 1978).
3. As explained in aos, the aim is to include not only the machines, de-
vices, implementations, architectures, programs, processes, algorithms,
languages, networks, interactions, behaviors, interfaces, etc., that consti-
tute computing, but also the design, implementation, maintenance, and
even use of such systems (such as Microsoft Word). Not, of course, that
a theory will explain any particular architecture, language, etc. Rather,
the point is that a foundational theory should explain what an architec-
ture is, what constraints architectures must meet, etc.

a3

a4

a5

a6

 The Foundations of Computing

 3

Draft Version 0.73 — 2014 · June · 1

conception of computability, taught in computer science de-
partments around the world, that currently goes by the name

“the theory of computation.”4 I also reject all proposals that
assume that computation can be defined. By my lights, that
is, computer science is an empirical endeavor.5 An adequate
theory must make a substantive empirical claim about what
I call computation in the wild:6 that eruptive body of practices,
techniques, networks, machines, and behavior that has so pal-
pably revolutionized late twentieth century life.

The second, “conceptual” criterion, that a theory own up to—
and as far as possible repay—its intellectual debts, is in a way
no more than standard theoretical hygiene. But it is important
to highlight, for two intertwined reasons. First, it turns out
that several candidate theories of computing (including the of-
ficial mathematical “theory of computation,” mentioned above,
as taught in computer science departments), as well as many
of the reigning but largely tacit ideas about computing held
in surrounding disciplines, implicitly rely, without explanation,
on such substantial, recalcitrant notions as interpretation,7
representation and semantics.8 Second, which only makes

4. Indeed, I ultimately argue that that theory—trafficking in Turing
machines, notions of “effective computability”, and the like—fails as a
theory of computing, in spite of its name and its popularity. It is simulta-
neously too broad, in applying to more things than computers, and too
narrow, in that it fails to apply to some things that are computers. More
seriously, what it is a theory of, is not computing. See §5.2.
5. Methodological issues arise, owing to the fact that we (at least seem
to) make up the evidence. Although this ultimately has metaphysical
as well as methodological implications, it undermines the empirical
character of computer science no more than it does in, say, sociology
or linguistics.
6. Adapted from Hutchins’ Cognition in the Wild (1995).
7. “Interpretation” is a technical notion in computing; how it relates to
the use of the term in ordinary language, or to what “interpretation” is
thought to signify in literary or critical discussions, is typical of the sort
of question to be addressed in the full analysis.
8. A notable example of such a far-from-innocent assumption is the

a7

4

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

matters worse, there is a widespread tendency throughout the
surrounding intellectual terrain to point to computation as a
possible theory of those very recalcitrant notions. Unless we fer-
ret out all such dependencies, and lay them in plain view, we
run at least two serious risks: (i) of endorsing accounts that
are either based on, or give rise to, vicious conceptual circular-
ity; and (ii) of promulgating and legitimating various unwar-
ranted preconceptions or parochial (e.g., modernist) biases
(such as of a strict mind-body dualism).

The third “cognitive” criterion, that an adequate theory of
computation must provide a tenable foundation for a theory
of mind, is of a somewhat different character. Like the second,
it is more a metatheoretic requirement on the form of a theory
than a constraint on substantive content. But its elevation to a
primary criterion is nonstandard, and needs explaining. Its in-
clusion is not based simply on the fact that the computational
theory of mind (the idea that we, too, might be computers) is
one of the most provocative and ramifying ideas in intellectual
history, underwriting artificial intelligence, cognitive psychol-
ogy, and contemporary philosophy of mind. Some other ideas
about computing are just as sweeping in scope (such as pro-
posals to unify the foundations of quantum mechanics with
the foundations of information), but have not spawned their
own methodological criteria here. Rather, what distinguishes
the computational theory of mind, in the present context, has
to do with the epistemological consequences that would fol-
low, if it were true.

widespread theoretical tendency to distinguish (i) an abstract and pre-
sumptively fundamental notion of “computation” from (ii) a concrete
but derivative notion of a “computer”—the latter simply being taken to
be any physical device able to carry out a computation. It turns out, on
inspection, that this assumption builds in a residually dualist stance to-
wards what is essentially the mind/body problem—a stance I eventually
want to argue against, and at any rate not a thesis that should be built
into a theory of computing as a presumptive but inexplicit premise.

 The Foundations of Computing

 5

Draft Version 0.73 — 2014 · June · 1

Theorizing is undeniably a cognitive endeavor. If the com-
putational theory of mind were correct, therefore, a theory of
computation would be reflexive—applying not only (at the
object-level) to computing in general, but also (at the meta-
level) to the process of theorizing. That is, the theory’s claims
about the nature of computing would apply to the theory itself.
On pain of contradiction, therefore, unless one determines the
reflexive implications of any candidate theory (of computing)
on the form that the theory itself should take, and assesses the
theory from such a reflexively consistent position, one will not
be able to judge whether it is correct.9

More specifically, suppose that mind is in fact computation-
al, and that we were to judge a candidate (object-level) theory
of computing from the perspective of an implicit metatheory
inconsistent with that candidate theory. And then suppose
that, when judged from that perspective, the candidate theory
is determined to be good or bad. There would be no reason
to trust such a conclusion. For the conclusion might be due
not to the empirical adequacy or failings of the theory under
consideration, but rather to the conceptual inadequacy of the
presumed metatheory.10

In sum, the plausibility of the computational theory of
mind requires that a proper analysis of a candidate theory of

9. For example, it would be inconsistent simultaneously to claim the fol-
lowing three things: (i) as many do, that scienti.fic theories should be
expressed from an entirely third-person, nonsubjective point of view;
(ii) as an intrinsic fact about all computational processes, that genuine
reference is possible only from a first-person, subjective vantage point
(“first-person” from the perspective of the machine); and (iii) that the
computational theory of mind is true. If one were to believe in the ine-
liminably first-person character of computational reference, and that
human reference is a species of computational reference, then consis-
tency would demand that such a theory be stated from a first-person
point of view—since, by hypothesis, no other way of presenting the
theory would refer.
10. Note that the situation is symmetric; reflexive inconsistencies can
generate both false negatives and false positives.

6

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

computing must consider: (i) what computational theory of
mind would be generated, in its terms; (ii) what form theories
in general would take, on such a model of mind; (iii) what
the candidate theory of computing in question would look
like, when framed as such a theory; (iv) whether the result-
ing theory (of computing), so framed, would hold true of
computation-in-the-wild; and (v) whether, if it did turn out
to be true (i.e., empirically), mentation and theorizing would,
by those lights, also be computational. All this is required, for
reflexive integrity. To do these things, we need to understand
whether—and how—the theory could underwrite a theory of
mind. Hence the cognitive criterion.

It is essential to understand, however, that the cognitive
criterion requires only that we understand what form a com-
putational theory of mind would take; it does not reflect any
commitment to accept such a theory. In committing myself to
honor the criterion, that is, I make no advance commitment
to computationaIism’s being true or false. I just want to know
what it says.

None of this is to say that the content of the computational
theory of mind is left open. Computationalism’s fundamental
thesis—that the mind is computational—is given substance
by the first, empirical criterion. Computationalism, that is—
at least as I read it—is not a theory-laden or “opaque” propos-
al, in the sense of framing or resting on a specific hypothesis
about what computers are. Rather, it has more an ostensive or

“transparent” character: that people (i.e., us) are computers in
whatever way that computers (i.e., those things over there) are
computers, or at least in whatever way some of those things
are computers.11

11. The computational theory of mind does not claim that minds and
computers are equivalent (in the sense that anything that is a mind is a
computer, and vice versa). Rather, the idea is that minds are (at least) a
kind of computer, and furthermore that the kind is itself computationally
characterized (i.e., that the characteristic predicate on the restricted class
of computers that are minds is itself framed in computational terms).

a8

 The Foundations of Computing

 7

Draft Version 0.73 — 2014 · June · 1

It follows that specific theoretical formulations of cognitiv-
ism (whether pro are con) are doubly contingent. Thus con-
sider, on the positive side, Newell and Simon’s (1976) popu-
lar “physical symbol system hypothesis,” according to which
human intelligence is claimed to consist of physical symbol
manipulation; or Fodor’s (1975, 1980) claim, that thinking
consists of formal symbol manipulation; or—on the critical
side—Dreyfus’ (1992) assertion that cognitivism (as opposed
to connectionism) requires the explicit manipulation of ex-
plicit symbols; or van Gelder’s (1995) claim that computation-
alism is both false and misleading, deserving to be replaced
by dynamical alternatives. Not only do these writers make a
hypothetical statement about people, that they are physical,
formal, or explicit symbol manipulators, respectively; they do
so by making a hypothetical statement about computers, that
they are in some essential or illuminating way characterizable
in the same way. Because I take the latter claim to be as subser-
vient to empirical adequacy as the former, there are two ways
in which these writers could be wrong. In claiming that people
are formal symbol manipulators, for example, Fodor would
naturally be wrong if computers were formal symbol manipu-
lators and people were not. But he would also be wrong, while
the computational theory of mind itself might still be true, if com-
puters were not formal symbol manipulators, either. Similarly,
van Gelder’s brief against computational theories of mind is
vulnerable to his understanding of what computing is actually
like. If, as I believe, computation-in-the-wild is not as he char-
acterizes it, then the sting of his critique is entirely eliminated.

In sum, cognitive science is, like computer science, hostage
to the foundational project:12 of formulating a comprehensive,

12. Foundationalism is widely decried, these days—especially in social
and critical discourses. Attempting a foundational reconstruction of the
sort I am attempting here may therefore be discredited, by some, in ad-
vance. As suggested in Smith (1996), however, I do not believe that any
of the arguments that have been raised against foundationalism (par-
ticularly: against the valorization of a small set of types or categories as

8

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

true, and intellectually satisfying theory of computing that
honors all three criteria. No one of them is easy to meet.

 3 Six Construals of Computing
Some might argue that we already know what computation is.
That in turn breaks into two questions: (i) is there a story—an
account that people think answers the question of what com-
puting is or what computers are; and (ii) is that story right?

Regarding the first question, the answer is not no, but it is
not a simple yes, either. More than one idea is at play in current
theoretic discourse. Over the last thirty years I have found it
convenient to distinguish seven construals of computation,
each requiring its own analysis:

1. Formal Symbol Manipulation (fsm): the idea, deriva-
tive from a century’s work in formal logic and meta-
mathematics, of a machine manipulating symbolic or
(at least potentially) meaningful expressions without
regard to their interpretation or semantic content;

2. Effective Computability (ec): what can be done, and
how hard it is to do it, mechanically, as it were, by an
abstract analogue of a “mere machine”;

3. Execution of an algorithm (alg) or rule-following

(rf): what is involved, and what behavior is thereby
produced, in following a set of rules or instructions,
such as when making dessert;

4. Calculation of a function (fun): the behavior, when
given as input an argument to a mathematical function,
of producing as output the value of that function ap-
plied to that argument;

holding an unquestioned and/or uniquely privileged status) amounts to
an argument against rigorously plumbing the depths of an intellectual
subject matter. In this chapter, my use of the term ‘foundational’ should
be taken as informal and, to an extent, lay (I am as committed as any-
one to the fallacies and even dangers of master narratives, ideological
inscription, and/or uniquely privileging any category or type).

a9

a10

a11

 The Foundations of Computing

 9

Draft Version 0.73 — 2014 · June · 1

5. Digital State Machine (dsm): the idea of an autom-
aton with a finite, disjoint set of internally homo-
geneous machine states—as parodied in the “clunk,
clunk, clunk” gait of a 1950s cartoon robot;

6. Information Processing (ip): what is involved in stor-
ing, manipulating, displaying, and otherwise trafficking
in information, whatever information might be; and

7. Physical Symbol Systems (pss): the idea, made fa-
mous by Newell and Simon (1976), that, somehow or
other, computers interact with, and perhaps also are
made of, symbols in a way that depends on their mu-
tual physical embodiment.

These seven construals have formed the core of our thinking
about computation over the last fifty years, but no claim is
made that this list of six is exhaustive.13 At least to date, how-
ever, it is these seven that have shouldered the lion’s share of
responsibility for framing the intellectual debate.

By far the most important step in getting to the heart of the
foundational question, I believe, is to recognize that these
seven construals are all conceptually distinct. In part because
of their great familiarity (we have long since lost our inno-
cence), and in part because “real” computers seem to exemplify
more than one of them—including those often-imagined
but seldom-seen Turing machines, complete with controllers,
read-write heads, and indefinitely long tapes—it is sometimes
uncritically thought that all seven can be viewed as rough syn-
onyms, as if they were different ways of getting at the same
thing. Indeed, this conflationary tendency is rampant in the
literature, much of which moves around among them as if do-
ing so were intellectually free. But that is a mistake. The sup-
position that any two of these construals amount to the same
thing, let alone that all seven do, is simply false.

13. [The footnote that appeared in this place in the original paper has
been reproduced here as the sidebar “Additional Construals” on p. …]

10

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

For example, consider the formal symbol manipulation
construal (fsm). It explicitly characterizes computing in terms
of a semantic or intentional aspect, if for no other reason than
that without some such intentional character there would

Additional Construals
Especially as the boundaries between computer science and surround-
ing intellectual territory erode (itself a development predicted by this
analysis; see §8), several ideas that originated in other fields are mak-
ing their way into the center of computational theorizing as alternative
conceptions of computing. At least three are important enough to be
seen as construals in their own right (though the first is not usually
assumed to have any direct connection with computing, and the latter
two are not normally assumed to be quite as “low-level” or foundational
as the primary seven):

8. Dynamics (DYN): the notion of a dynamical system, linear or
non-linear, as popularized in discussions of attractors, turbu-
lence, criticality, emergence, etc.;

9. Interactive Agents (IA): active agents enmeshed in an embed-
ding environment, interacting and communicating with other
agents (and perhaps also with people); and

10. Self-organizing or Complex Adaptive Systems (CAS): a no-
tion—often associated with the Santa Fe Institute—of self-or-
ganizing systems that respond to their environment by adjust-
ing their organization or structure, so as to survive and (perhaps
even) prosper.

Additional construals may need to be added, over time. Moreover, there
are even those who deny that computation has any ontologically dis-
tinct identity. Thus Agre (1997), for example, claims that computation
should instead be methodologically individuated:

11. Physical Implementation (PHY): a methodological hypothesis
that computation is not ontologically distinct, but rather that
computational practice is human expertise in the physical or
material implementation of (apparently arbitrary) systems.

a12

4

 The Foundations of Computing

 11

Draft Version 0.73 — 2014 · June · 1

be no warrant in calling it symbol manipulation.14 The digi-
tal state machine construal (dsm), in contrast, makes no such
reference to intentional properties. If a Lincoln-log contrap-
tion were digital but not symbolic, and a system manipulating
continuous symbols were formal but not digital, they would
be differentially counted as computational by the two constru-
als. Not only do fsm and dsm mean different things, in other
words; they (at least plausibly) have overlapping but distinct
extensions.

The effective computability (ec) and algorithm execution
(alg) construals similarly differ on the crucial issue of seman-
tics. Whereas the effective computability construal, at least
in the hands of computer scientists, seems free of intentional
connotation,15 the idea of algorithm execution, as I have char-
acterized it, seems not only to involve rules or recipes, which
presumably do mean something, but also (pace Wittgenstein)
to require some sort of understanding on the part of the agent
producing the behavior.

Semantics is not the only open issue. It is similarly unclear
whether the notions of “machine” and “taking an effective step”
internal to the ec construal make fundamental reference to
causal powers, material realization, or other concrete physical
properties, or whether, as most current theoretical discussions
suggest, effective computability should be taken as an entirely
abstract mathematical notion. Again, if we do not understand
this mind-body problem for machines, how can we expect
computational metaphors to help us in the case of people?

There are still other differences among construals. They dif-
fer on whether they inherently focus on internal structure or
external input/output, for example—i.e., on whether: (i) they
treat computation as fundamentally a way of being structured

14. See note 22.
15. At least some logicians and philosophers, in contrast, do read the
effective computability construal semantically. This difference is exactly
the sort of question that needs to be disentangled and explained in the
full analysis.

a12.5

12

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

or constituted, so that surface or externally observable behavior
is derivative; or whether (ii) the having of a particular behavior
is the essential locus of being computational, with questions
about how that is achieved left unspecified and uncared about.
The formal symbol manipulation and digital state machine
construals are of the former, structurally constitutional type;
effective computability is of the latter, behavioral variety; algo-
rithm execution appears to lie somewhere in the middle).

The construals also differ in the degree of attention and
allegiance they have garnered in different disciplines. Formal
symbol manipulation (fsm) has for many years been the con-
ception of computing that is privileged in artificial intelligence
and philosophy of mind, but it receives almost no attention in
computer science. Theoretical computer science focuses pri-
marily on the effective computability (ec) and algorithm (alg)
construals, whereas mathematicians, logicians, and most phi-
losophers of logic and mathematics pay primary allegiance
to the functional conception (fun). Publicly, in contrast, it is
surely the information processing (ip) construal that receives
the major focus—being by far the most likely characterization
of computation to appear in the Wall Street Journal, and the
idea responsible for such popular slogans as “the information
age” and “the information highway.”

Not only must the seven construals be differentiated one
from another; additional distinctions must be made within
each one. Thus the idea of information processing (ip) needs
to be broken down, in turn, into at least three sub-readings,
depending on how ‘information’ is understood: (i) as a lay no-
tion, dating from perhaps the nineteenth-century, of some-
thing like an abstract, publicly-accessible commodity, carrying
a certain degree of autonomous authority; (ii) so-called “in-
formation theory,” an at least seemingly semantics-free notion
that originated with Shannon and Weaver (1949), spread out
through much of cybernetics and communication theory, is

a14

a15

a13

 The Foundations of Computing

 13

Draft Version 0.73 — 2014 · June · 1

implicated in Kolmogorov, Chaitin, and similar complexity
measures, and has more recently been tied to notions of ener-
gy and, particularly, entropy; and (iii) the semantical notion of
information advocated by Dretske (1981), Barwise and Perry
(1983), Halpern (1987), and others, which in contrast to the
second deals explicitly with semantic content and veridicality.

Clarifying all these issues, bringing the salient assumptions
to the fore, showing where they agree and where they differ,
tracing the roles they have played in the last forty years—ques-
tions like this must be part of any foundational reconstruction.
But in a sense these issues are all secondary. For none has the
bite of the second question raised at the beginning of the sec-
tion: of whether any of the enumerated accounts is right.

Naturally, one has to say just what this question means—
has to answer the question “Right of what?”—in order to
avoid the superficial response: “Of course such and such a
construal is right; that’s how computation is defined!” This is
where the empirical criterion takes hold. More seriously, I am
prepared to argue for a much more radical conclusion, which
we can dub as the first major result:16

c1. When subjected to the empirical demands of practice
and the (reflexively mandated) conceptual demands of
cognitive science, all seven primary construals fail—for
deep, overlapping, but distinct, reasons.

 4 Diagnosis I: General
What is the problem? Why do these theories all fail?

The answers come at many levels. In the next section I dis-
cuss some construal-specific problems. But a general thing
can be said first. Throughout, the most profound difficulties
have to do with semantics. It is widely (if tacitly) recognized
that computation is in one way or another a symbolic or rep-
resentational or information-based or semantical—that is,

16. This numbering system (C1–C9) is used only for purposes of this
chapter; it will not necessarily be used in aos.

a16

14

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

as philosophers would say, an intentional—phenomenon.17
Somehow or other, though in ways we do not yet understand,
the states of a computer can model or simulate or represent or
stand for or carry information about or signify other states in
the world (or at least can be taken by people to do so). This se-
mantical or intentional character of computation is betrayed
by such phrases as symbol manipulation, information process-
ing, programming languages, knowledge representation, data-
bases, and so on. Indeed, if computing were not intentional, it
would be spectacular that so many intentional words of Eng-
lish systematically serve as technical terms in computer sci-
ence.18 Furthermore—and this is important to understand—
it is the intentionality of the computational that motivates the
cognitivist hypothesis. The only compelling reason to suppose
that we (or minds or intelligence) might be computers stems
from the fact that we, too, deal with representations, symbols,
meaning, information, and the like.19

17. Although the term ‘intentional’ is primarily philosophical, there are
many philosophers, to say nothing of some computer and cognitive sci-
entists, who would deny that computation is an intentional phenom-
enon. Reasons vary, but the most common goes something like this: (i)
that computation is both syntactic and formal, where ‘formal’ means “in-
dependent of semantics”; and (ii) that intentionality has fundamentally
to do with semantics; and therefore (iii) that computation is thereby not
intentional. I believe this is wrong, both empirically (that computation
is purely syntactic) and conceptually (that being syntactic is a way of not
being intentional); I also disagree that being intentional has only to do
with semantics, which the denial requires. See note 22.
18. Thus computer science’s use of (the English words) ‘language,’ ‘repre-
sentation,’ ‘data,’ etc. is analogous to physics’ use of ‘work,’ ‘force,’ ‘energy,’
etc.—as opposed to its use of ‘charm.’ That is, it reflects a commitment
to do scientific justice to the center of gravity of the word’s natural
meaning, rather than being mere whimsical fancy.
19. Physically, we and (at least contemporary) computers are not very
much alike—though it must be said that one of the appeals, to some
people at least, of the self-organizing or complex-adaptive-system con-
strual (cas) is its prospect of providing a naturalistically palatable and

a17

 The Foundations of Computing

 15

Draft Version 0.73 — 2014 · June · 1

For someone with cognitivist leanings, therefore—as op-
posed, say, to an eliminativist materialist, or to some types of
connectionist—it is natural to expect that a comprehensive
theory of computation will have to focus on its semantical as-
pects. This raises problems enough. Consider just the issue of
representation. In order to meet the first criterion, of empiri-
cal adequacy, a successful candidate will have to make sense
of the myriad kinds of representation that saturate practical
systems—from bit maps and images to knowledge represen-
tations and databases; from high-speed caches to long-term
backup tapes; from low-level finite-element models used in
simulation to high-level analytic descriptions supporting rea-
soning and inference; from text to graphics to audio to video
to virtual reality. As well as being vast in scope, it will also have
to combine decisive theoretical bite with exquisite resolution,
in order to distinguish: models from implementations; analy-
ses from simulations; and virtual machines at one level of ab-
straction from virtual machines at another level of abstraction,
in terms of which the former may be implemented.

To meet the second, conceptual criterion, moreover, any
account of this profusion of representational practice must
be grounded on, or at least defined in terms of, a theory of
semantics or content, partly in order for the concomitant psy-
chological theory to avoid vacuity or circularity, and partly so
that even the computational part of the theory meet a mini-
mal kind of naturalistic criterion: that we understand how
computation is part of the natural world. This is made all the
more difficult by the fact that the word ‘semantics’ is used in an
incredible variety of senses across the range of the intentional
sciences. Indeed, in my experience it is virtually impossible,
from any one location within that range, to understand the
full significance of the term, so disparate is that practice in toto.

nonintentional but nevertheless specific way of discriminating people-
cum-computers (and perhaps higher animals) from arbitrary physical
devices.

a18

16

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

Genuine theories of content,20 moreover—of what it is
that makes a given symbol or structure or patch of the world
be about or oriented towards some other entity or structure or
patch—are notoriously hard to come by.21 Some putatively
foundational construals of computation are implicitly defined
in terms of just such a background theory of semantics, but do
not explain what semantics is, and thus fail the second, con-
ceptual criterion. This includes the first, formal symbol ma-
nipulation construal so favored (and disparaged!) in the cog-
nitive sciences, in spite of its superficial formulation as being

“independent of semantics.”22 Other construals, such as those
that view computation as the behavior of discrete automata—
and also, I will argue below, even if this is far from immedi-

20. In computer science, to take a salient example, the term “the seman-
tics of α”, where α is an expression or construct in a programming lan-
guage, means approximately the following: the topological (as opposed
to geometrical) temporal profile of the behavior to which execution of
this program fragment gives rise. By ‘topological’ I mean that the overall
temporal order of events is dictated, but that their absolute or metric
time-structure (e.g., exactly how fast the program runs) is not. As a result,
a program can usually be sped up, either by adjusting the code or running
it on a faster processor, without, as is said, “changing the semantics.”
21. Best known are Dretske’s semantic theory of information (1981),
which has more generally given rise to what is known as “indicator se-
mantics”; Fodor’s “asymmetrical-dependence” theory (1987); and Mil-
likan’s “teleosemantics” or “biosemantics” (1984, 1989). For comparison
among these alternatives see, e.g., Fodor (1984) and Millikan (1990).
22. Because formal symbol manipulation is usually defined as “manipula-
tion of symbols independent of their interpretation”, some people believe
that the formal symbol manipulation construal of computation does not
rest on a theory of semantics. But that is simply an elementary, though
apparently common, conceptual mistake. As discussed further in §5, the

“independence of semantics” postulated as essential to the formal symbol
construal is independence at the level of the phenomenon; it is a claim
about how symbol manipulation works. Or so at least I believe, based
on many years of investigating what practitioners are actually commit-
ted to (whether it is true—i.e., holds of computation-in-the-wild—is a
separate issue). The intuition is simple enough: that semantic properties,

a18.5

 The Foundations of Computing

 17

Draft Version 0.73 — 2014 · June · 1

ately evident, the recursion-theoretic one that describes such
behavior as the calculation of effective functions—fail to deal
with computation’s semantical aspect at all, in spite of some-
times using semantical vocabulary, and so fail the first, empiri-
cal criterion. In the end, one is inexorably driven to a second
major conclusion:23

c2. In spite of the advance press, especially from cognitiv-
ist quarters, computer science, far from supplying the
answers to fundamental intentional mysteries, must,
like cognitive science, await the development of a satis-
fying theory of semantics and intentionality.

such as referring to the Sphinx, or being true, are not of the right sort to
do effective work—so they cannot be the sort of property in virtue of
the manifestation of which computers run.

At issue in the present discussion, in contrast, is a more logical form
of independence, at the level of the theory (or, perhaps, to put it more on-
tologically and less epistemically, independence at the level of the types).
Here the formal symbol manipulation construal is as dependent on se-
mantics as it is possible to be: it is defined in terms of it. And (as the par-
ent of any teenager knows) defining yourself in opposition to something
is not ultimately a successful way of achieving independence. Symbols
must have a semantics, in other words (have an actual interpretation,
or be interpretable, or whatever), in order for there to be something
substantive for their formal manipulation to proceed independently of.
Without a semantic character to be kept crucially in the wings, the for-
mal symbol manipulation construal would collapse in vacuity—would
degenerate into something like “the manipulation of structure” or, as I
put it in aos, “stuff manipulation”—i.e., materialism.
23. As suggested in the preceding footnote, philosophers are less likely
than computer scientists to expect a theory of computation to be, or
to supply, a theory of intentionality. That is, they would not expect the
metatheoretic structure to be as expected by most computer scientists
and artificial intelligence researchers—namely, to have a theory of inten-
tionality rest on a theory of computation. But that does not mean they
would necessarily agree with the opposite, which I am arguing here: that
a theory of computation will have to rest on a theory of intentionality.
Many philosophers seem to think that a theory of computation can be
independently of a theory of intentionality. Clearly, I do not believe this
is correct.

18

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

 5 Diagnosis II: Specific
So none of the seven construals provides an account of se-
mantics. Since I take computation to be semantic (not just by
assumption, but as an unavoidable lesson from empirical in-
vestigation), that means they fail as theories of computation,
as well (i.e., C2 implies C1). And that is just the beginning of
the problems. All seven also fail for detailed structural rea-
sons—different reasons per construal, but reasons that add
up, overall, to a remarkably coherent overall picture.

In this section I summarize just a few of the problems, to
convey a flavor of what is going on. In each case, to’put this in
context, these results emerge from a general effort, in the main
investigation, to explicate, for each construal:

1. What the construal says or comes to—what claim it
makes about what it is to be a computer;

2. Where it derives from, historically;
3. Why it has been held;
4. What’s right about it—what insights it gets at;
5. What is wrong with it, conceptually, empirically, and

explanatorily;
6. Why it must ultimately be replaced; and
7. What about it should nevertheless be retained in a

“successor,” more adequate account.

 5a Formal Symbol Manipulation
The fsm construal has a distinctly antisemantical flavor, ow-
ing to its claim that computation is the “manipulation of sym-
bols independent of their semantics.” On analysis, it turns out
to be motivated by two entirely different, ultimately incom-
patible, independence intuitions. The first motivation is at the
level of the theory, and is reminiscent of a reductionist desire
for a “semantics-free” account. It takes the fsm thesis as a claim
that computation can be described or analyzed in a semantics-

a19

 The Foundations of Computing

 19

Draft Version 0.73 — 2014 · June · 1

free way. If that were true, so the argument goes, that would go
some distance towards naturalizing intentionality (as Hauge-
land says, “... if you take care of the syntax, the semantics will
take care of itself ”).†

There is a second motivating intuition, different in charac-
ter, that holds at the level of the phenomenon. Here the idea
is simply the familiar observation that intentional phenomena,
such as reasoning, hoping, or dreaming, carry on in relative
independence of their subject matters or referents. Reference
and truth, it is recognized, are just not the sorts of properties
that can play a causal role in engendering behavior—essen-
tially because they involve some sort of relational coordination
with things that are too far away (in some relevant aspect) to
make a difference. This relational characteristic of intention-
ality—something I call semantic disconnection—is such a
deep aspect of intentional phenomena that it is hard to imag-
ine its being false. Without it, fantasy lives would be meta-
physically banned; you would not be able to think about con-
tinental drift without bringing the tectonic plates along with
you.

For discussion, I label the two readings of the formal sym-
bol manipulation construal conceptual and ontological, respec-
tively.24 The ontological reading is natural, familiar, and based
on a deep insight. But it is too narrow. Many counterexamples
can be cited against it, though space does not permit rehears-
ing them here.25 Instead, to get to the heart of the matter, it
helps to highlight a distinction between two kinds of “bound-
ary” thought to be relevant or essential—indeed, often as-
sumed a priori—in the analysis of computers and other inten-
tional systems:

† Haugeland (1981a, 23); see also Haugeland (1985).
24. It can be tempting to think of the two readings as corresponding to intensional and
extensional readings of the phrase “independent of semantics”—but that is not strictly
correct. See aos.
25. See aos Volume ii.

a20

20

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

1. physical: A physical boundary between the system
and its surrounding environment—between “inside”
and “outside”; and

2. semantic: A semantic “boundary” between symbols
and their referents.

In terms of these two distinctions, the ontological reading of
the fsm construal can be understood as presuming the follow-
ing two theses:

1. alignment: That the physical and semantic boundar-
ies line up, with all the symbols inside, all the referents
outside; and

2. isolation: That this allegedly aligned boundary is
a barrier or gulf across which various forms of depen-
dence (causal, logical, explanatory) do not reach.

The fundamental idea underlying the fsm thesis, that is, is
that a barrier of this double allegedly-aligned sort can be
drawn around a computer, separating a pristine inner world
of symbols—a private kingdom of ratiocination or thought,
as it were—understood both to work (ontologically) and to
be analyzable (theoretically) in isolation, without distracting
influence from the messy, unpredictable exterior.

It turns out, in a way that is not ultimately surprising, that
the traditional examples motivating the fsm construal, such
as theorem proving in formal logic, meet this complex con-
dition. First, they involve internal symbols designating exter-
nal situations, thereby satisfying alignment: (internal) da-
tabases representing (external) employee salaries, (internal)
differential equations modeling the (external) perihelion of
Mercury, (internal) first-order axioms designating (external)
Platonic numbers or purely abstract sets, and so on. Second,
especially in the paradigmatic examples of formal axiomatiza-
tions of arithmetic and proof systems of first-order logic (and,

 The Foundations of Computing

 21

Draft Version 0.73 — 2014 · June · 1

even more especially, when those systems are understood in
classical, especially model-theoretic, guise), the system is as-
sumed to exhibit the requisite lack of interaction between the
(internal) syntactic proof system and the (external, perhaps
model-theoretic) interpretation, satisfying isolation. In con-
junction, the two assumptions allow the familiar two-part pic-
ture of a formal system to be held: a locally contained syntactic
system, on the one hand, consisting of symbols or formulae
in close causal intimacy with a proof-theoretic inference regi-
men; and a remote realm of numbers or sets or “ur-elements,”
in which the symbols or formulae are interpreted, on the other.
It is because the formality condition relies on both theses to-
gether that the classical picture takes computation to consist
exclusively of symbol-symbol transformations, carried on en-
tirely within the confines of a machine.

The first—and easier—challenge to the antisemantical the-
sis comes when one retains the first alignment assumption,
of coincident boundaries, but relaxes the second isolation
claim, of no interaction. This is the classical realm of input/
output, home of the familiar notion of a transducer. And it
is here that one encounters the most familiar challenges to
the fsm construal, such as the “robotic” and “system” replies to
Searle’s (1980) Chinese room argument, and Harnad’s (1990)

“Total Turing Test” as a measure of intelligence. Thus imagine
a traditional perception system—for example, one that on en-
counter with a mountain lion constructs a symbolic represen-
tation of the form mountain-lion-043. There is interaction
(and dependence) from external world to internal representa-
tion. By the same token, an actuator system, such as one that
would allow a robot to respond to a symbol of the form cross-
the-street by moving from one side of the road to the other,
violates the independence assumption in the other direction,
from internal representation to external world.

Note, in spite of this interaction, and the consequent viola-

22

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

tion of isolation, that alignment is preserved in both cas-
es: the transducer is imagined to mediate between an internal
symbol and an external referent. Nevertheless, the violation
of isolation is already enough to defeat the formality con-
dition. This is why transducers and computation are widely
recognized to be uneasy bedfellows, at least when formal-
ity is at issue. It is also why, if one rests the critique at this
point, defenders of the antisemantical construal are tempted
to wonder, given that the operations of transducers violate for-
mality, whether they should perhaps be counted as not being
computational.26 Given the increasing role of environmental
interaction within computational practice, it is not at all clear
that this would be possible, without violating the condition of
empirical adequacy embraced at the outset. For our purposes
it doesn’t ultimately matter, however, because the critique is
only halfway done.

More devastating to the fsm construal are examples that
challenge the alignment thesis. It turns out, on analysis, that
far from lining up on top of each other, real-world computer
systems’ physical and semantic boundaries cross-cut, in rich
and productive interplay. It is not just that computers are in-
volved in an engaged, participatory way with external subject
matters, in other words, as suggested by some recent “situated”
theorists. They are participatorily engaged in the world as a
whole—in a world that indiscriminately includes themselves,
their own internal states and processes. This integrated par-
ticipatory involvement, blind to any a priori subject-world
distinction, and concomitantly intentionally directed towards
both internally and externally exemplified states of affairs, is
not only architecturally essential, but is also critical, when the
time comes, in establishing and grounding a system’s inten-
tional capacities.

26. Thus Devitt (1991) restricts the computational thesis to what he calls
“thought-thought” (t-t) transactions; for him output (t-o) and input (i-t)
transactions count as non-computational.

 The Foundations of Computing

 23

Draft Version 0.73 — 2014 · June · 1

From a purely structural point of view, four types of case are
required to demonstrate this non-alignment of boundaries: (i)
where a symbol and referent are both internal; (ii) where a
symbol is internal and its referent external; (iii) where sym-
bol and referent are both external; and (iv) where symbol is
external and referent internal. The first is exemplified in cases
of quotation, meta-structural designation, window systems, e-
mail, compilers, loaders, network routers, and at least arguably
all programs (as opposed, say, to databases). The second, of
internal symbols with external referents, can be considered as
something of a theoretical (though not necessarily empirical)
default, as for example when one reflects on the sun’s setting
over Georgian Bay (to use a human example), or when a com-
puter database represents the usage pattern of a set of uni-
versity classrooms. The third and fourth are neither more nor
less than a description of ordinary written text, public writing,
etc.—to say nothing of pictures, sketches, conversations, and
the whole panoply of other forms of external representation.
Relative to any particular system, they are distinguished by
whether the subject matters of those external representations
are similarly external, or are internal. The familiar red skull-
and-cross-bones signifying radioactivity is external to both
man and machine, and also denotes something external to
man and machine, and thus belongs to the third category. To
a computer or person involved, on the other hand, an account
of how they work (psychoanalysis of person or machine, as it
were, to say nothing of logic diagrams, instruction manuals,
etc.) is an example of the fourth.

By itself, violating alignment is not enough to defeat
formality. What it does accomplish, however, is to radically
undermine isolation’s plausibility. In particular, the anti-
semantical thesis constitutive of the fsm construal is chal-
lenged not only because these examples show that the physi-
cal and semantic boundaries cross-cut, thereby undermining

a21

24

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

the alignment assumption, but because they illustrate the
presence, indeed the prevalence, of effective traffic across both
boundaries—between and among all the various categories in
question—thereby negating isolation.

And this negation of isolation, in turn, shows up, for
what it is, the common suggestion that transducers, because
of violating the antisemantical thesis, should be ruled “out of
court”—i.e., should be taken as non-computational, à la De-
vitt (1991).27 It should be clear that this maneuver is ill-advised;
even a bit of a cop-out. For consider what a proponent of such
a move must face up to, when confronted with boundary non-
alignment. The notion of a transducer must be split in two. In or-
der to retain an antisemantical (fsm) construal of computing,
someone interested in transducers would have to distinguish:

1. Physical transducers, for operations or modules that
cross or mediate between the inside and outside of a
system; and

2. Semantic transducers, for operations or modules that
mediate or “cross” between symbols and their referents.

And it is this bifurcation, finally, that irrevocably defeats the
antisemantical claim. For the only remotely plausible notion
of transducer, in practice, is the physical one. That is what we
think of when we imagine vision, touch, smell, articulation,
wheels, muscles, and the like: systems that mediate between
the internals of a system and the “outside” world. Transducers,
that is, at least in informal imagination of practitioners, are for
connecting systems to their (physical) environments.28 What
poses a challenge to the formal (antisemantical) symbol ma-

27. See the preceding note.
28. This statement must be understood within the context of computer
science, cognitive science, and the philosophy of mind. It is telling that
the term ‘transducer’ is used completely differently in engineering and
biology (its natural home), to signify mechanisms that mediate changes
in medium, not that cross either the inside/outside or the symbol/refer-
ent boundary.

a22

 The Foundations of Computing

 25

Draft Version 0.73 — 2014 · June · 1

nipulation construal of computation, on the other hand, are
semantic transducers: those aspects of a system that involve
trading between occurrent states of affairs, on the one hand,
and representations of them, on the other. Antisemantics is
challenged as much by disquotation as by driving around.

As a result, the only way to retain the ontological version of
the fsm construal is to disallow (i.e., count as non-computa-
tional) the operations of semantic transducers. But that is ab-
surd! It makes it clear, ultimately, that distinguishing that sub-
set of computation which satisfies the ontological version of
the antisemantical claim is not only unmotivated, solving the
problem by fiat (making it uninteresting), but is a spectacularly
infeasible way to draw and quarter any actual, real-life system.
For no one who has ever built a computational system has ever
found any reason to bracket reference-crossing operations, or
to treat them as a distinct type. Not only that; think of how
many different kinds of examples of semantic transducer one
can imagine: counting, array indexing, e-mail, disquotation,
error-correction circuits, linkers, loaders, simple instructions,
database access routines, pointers, reflection principles in logic,
index operations into matrices, most Lisp primitives, and the
like. Furthermore, to define a species of transducer in this se-
mantical way, and then to remove them from consideration as
not being genuinely computational, would make computation
(minus the transducers) antisemantical tautologically. It would
no longer be an interesting claim on the world that computa-
tion was antisemantical—an insight into how things are. In-
stead, the word ‘computation’ would simply be shorthand for
antisemantical symbol manipulation. The question would be
whether anything interesting was in this named class—and, in
particular, whether this conception of computation captured
the essential regularities underlying practice. And we have al-
ready seen the answer to that: it is no.

In sum, introducing a notion of a semantical transducer

a23

a24

26

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

solves the problem tautologically, cuts the subject matter at an
unnatural joint, and fails to reconstruct practice. That is quite
a lot to have going against it.

Furthermore, to up the ante on the whole investigation, not
only are these cases of “semantic transduction” all perfectly
well-behaved; they even seem, intuitively, to be as “formal” as
any other kind of operation. If that is so, then those systems
either are not formal, after all, or else the word ‘formal’ has never
meant independence of syntax and semantics in the way that the
fsm construal claims. Either way, the ontological construal does
not survive.

Though it has been framed negatively, we can summarize
this result in positive terms:

c3. Rather than consisting of an internal world of symbols
separated from an external realm of referents, as imag-
ined in the fsm construal, real-world computational
processes are participatory: they involve complex paths
of causal interaction between and among symbols and
referents, both internal and external, cross-coupled in
complex configurations.

 5b Effective Computability
Although different in detail, the arguments against the other
primary construals are similar in style. In each case, I have
tried to develop a staged series of counterexamples, not simply
to show the construal false, but to serve as strong enough in-
tuition pumps on which to base a positive alternative. In other
words, the point is not critique, but deconstruction en route
to reconstruction. Space permits a few words about just one
other construal: effective computability—the idea that under-
writes recursion theory, complexity theory, and, as I have said,
the official (mathematical) “Theory of Computation.”

Note, for starters—as mentioned earlier—that whereas

a25

 The Foundations of Computing

 27

Draft Version 0.73 — 2014 · June · 1

the first, fsm construal is predominant in artificial intelligence,
cognitive science, and philosophy of mind, it is the second, ef-
fective computability (ec) construal, in contrast, that under-
lies most theoretical and practical computer science.

Fundamentally, it is widely agreed, the theory of effective
computability focuses on “what can be done by a mechanism.”
But two conceptual problems have clouded its proper appre-
ciation. First, in spite of its subject matter, it is almost always
characterized abstractly, as if it were a branch of mathemat-
ics. Second, it is imagined to be a theory defined over (for ex-
ample) the numbers. Specifically, the marks on the tape of the
paradigmatic Turing machine are viewed as representations or
encodings—representations, in general, or at least in the first
instance, of numbers, functions, or other Turing machines.

In almost exact contrast to the received view, I argue two
things. First, I claim that the theory of effective computabil-
ity is fundamentally a theory about the physical nature of
patches of the world. In underlying character, I believe, it is
no more “mathematical” than anything else in physics—even
if we use mathematical structures to model that physical real-
ity. Second—and this is sure to be contentious—I argue that
recursion theory is fundamentally a theory of marks. More spe-
cifically, rather than taking the marks on the tape to be repre-
sentations of numbers, as has universally been assumed in the
theoretical tradition, I defend the following claim:

c4. The representation relation for Turing machines, al-
leged to run from marks to numbers, in fact runs the
other way, from numbers to marks. The truth is 180°
off what we have all been led to believe.

All sorts of evidence are cited in defense of this non-standard
claim. For example:

1. Unless one understands it this way, one can solve the
halting problem;29

29. See aos: Volume iii.

a25.5

28

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

2. An analysis of history, through Turing’s paper and sub-
sequent work, especially including the development of
the universal Turing machine, shows how and why the
representation relation was inadvertently turned up-
side down in this way;

3. The analysis makes sense of a number of otherwise-
inexplicable practices, including, among other exam-
ples: (i) the use of the word “semantics” in practicing
computer science to signify the behavior engendered
by running a program,30 (ii) the rising popularity of
such conceptual tools as Girard’s linear logic, and (iii)
the close association between theoretical computer sci-
ence and constructive mathematics.

It follows from this analysis that all use of semantical vocabu-
lary in the “official” Theory of Computation is metatheoretic.
As a result, the so-called (mathematical) “Theory of Computation”
is not a theory of intentional phenomena—in the sense that it is
not a theory that deals with its subject matter as an intentional
phenomena.

In this way the layers of irony multiply. Whereas the fsm
construal fails to meet its own criterion, of being “defined in-
dependent of semantics,” this second construal does meet (at
least the conceptual reading of) that first-construal condi-
tion. Exactly in achieving that success, however, the recursion-
theoretic tradition thereby fails. For computation, as was said
above, and as I am prepared to argue, is (empirically) an inten-
tional phenomenon. So the ec construal achieves naturalistic
palatability at the expense of being about the wrong subject
matter.

We are thus led inexorably to the following very strong
conclusion: what goes by the name “Theory of Computation”
fails not because it makes false claims about computation, but
because it is not a theory of computation at all.31, 32

30. See note 20.
31. The fact that it is not a theory of computing does not entail that it

a26

 The Foundations of Computing

 29

Draft Version 0.73 — 2014 · June · 1

In sum, the longer analysis ultimately leads to a recommen-
dation that we redraw a substantial portion of our intellec-
tual map. What has been called a “Theory of Computation” is
in fact a general theory of the physical world—specifically, a
theory of how hard it is, and what is required, for patches of
the world in one physical configuration to change into another
physical configuration. It applies to all physical entities, not
just to computers. It is no more mathematical than the rest of
physics, and thus it should be joined with physics—because in
a sense it is physics.

We can put this result more positively. Though falsely (and
misleadingly) labeled, the mathematical Theory of Com-
putation has been a spectacular achievement, of which the
twentieth-century should be proud. Indeed, this is important
enough that we can label it as the fifth major result:

c5. Though not yet so recognized, the mathematical the-
ory based on recursion theory, Turing machines, com-
plexity analyses, and the like—widely known as the

“Theory of Computation”—is neither more nor less
than a mathematical theory of causality.

 6 Method
Similarly strong conclusions can be arrived at by pursuing
each of the other construals. Indeed, the conclusion from the

does not apply to computers, of course. All it means is that, in that ap-
plication, it is not a theory of them as computers.
32. That the so-called theory of computation fails as a theory of com-
putation because it does not deal with computation’s intentionality is
a result that should be agreed even by someone (e.g., Searle) who be-
lieves that computation’s intentionality is inherently derivative. I myself
do not believe that computation’s intentionality is inherently derivative,
as it happens, but even those who think it is must admit that it is still
an intentional phenomenon of some sort. For derivative does not mean
fake or false. If “derivatively intentional” is not taken to be a substantive
constraint, then we are owed (e.g., by Searle) an account of what does
characterize computation.

30

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

analysis of the digital state machine construal (dsm)—that
computation-in-the-wild is not digital—is, if anything, even
more consequential than the results derived from either the
FSM or the EC critiques. Rather than go into them here, how-
ever, I instead want to say a word about method—specifi-
cally, about formality. For a potent theme underlies all seven
critiques: that part of what has blinded us to the true nature
of computation has to do with the often pretheoretic assump-
tion that computation and/or computers are formal.

In one way or another, no matter what construal they
pledge allegiance to, just about everyone thinks that comput-
ers are formal—that they manipulate symbols formally, that
programs specify formal procedures, that data structures
are a kind of formalism, that computational phenomena are
uniquely suited for analysis by formal methods, and so on. In
fact the computer is often viewed as the crowning achievement
of an entire “formal tradition”—an intellectual orientation,
reaching back through Galileo to Plato, that was epitomized
in the twentieth century in the logic and metamathematics of
Frege, Russell, Whitehead, Carnap, and Turing, among others.

This history would suggest that formality is an essential as-
pect of computation. But since the outset, I have not believed
that this is necessarily so. For one thing, it has never been clear
what the allegiance to formality is an allegiance to. It is not
as if “formal” is a technical or theory-internal predicate, after
all. People may believe that developing an idea means formal-
izing it, and that programming languages are formal languages,
and that theorem provers operate on formal axioms—but few
write “formal(x)” in their daily equations. Moreover, a raft of
different meanings and connotations of this problematic term
lies just below the surface. Far from hurting, this apparent am-
biguity has helped to cement popular consensus. Freed of the
need to be strictly defined (‘formal’ is not a formal predicate),
formality has been able to serve as a lightning rod for a clus-

 The Foundations of Computing

 31

Draft Version 0.73 — 2014 · June · 1

ter of ontological assumptions, methodological commitments,
and social and historical biases.

Because it remains tacit, cuts deep, has important historical
roots, and permeates practice, formality has been an ideal foil,
over the years, with which to investigate computation.

Almost a dozen different readings of ‘formal’ can be gleaned
from informal usage: precise, abstract, syntactic, mathemati-
cal, explicit, digital, a-contextual, non-semantic, among others.33
They are alike in foisting recalcitrant theoretical issues onto
center stage. Consider explicitness, for example, of the sort
that might explain such a sentence as “for theoretical purposes
we should lay out our tacit assumptions in a formal represen-
tation.” Not only have implicitness and explicitness stubbornly
resisted theoretical analysis, but both notions are parasitic on
something else we do not understand: general representa-
tion.34 Or consider “a-contextual.” Where is an overall theory
of context in terms of which to understand what it would be
to say of something (a logical representation, say) that it was
not contextually dependent?

Considerations like this suggest that particular readings of
formality can be most helpfully pursued within the context
of the general theoretical edifices that have been constructed
(more or less explicitly) in their terms. Five are particularly
important:

33. At one stage I asked a number of people what they thought “formal”
meant—not just computer scientists, but also mathematicians, physi-
cists, sociologists, etc. It was clear from the replies that the term has
very different connotations in different fields. Some mathematicians
and logicians, for example, take it to be pejorative, in contrast to the
majority of theoretical computer scientists, for whom it has an almost
diametrically opposed positive connotation.
34. On its own, an eggplant cannot be either formal or explicit, at least
not in its ordinary culinary role, since in that role it is not a representa-
tion at all. In fact the only way to make sense of calling something non-
representational explicit is as short-hand for saying that it is explicitly
represented (e.g., calling eggplant an explicit ingredient of moussaka as a
way of saying that the recipe for moussaka mentions eggplant explicitly).

a27

a28

32

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

1. The antisemantical reading mentioned above: the idea
that a symbolic structure (representation, language,
program, symbol system, etc.) is formal just in case it is
manipulated independent of its semantics. Paradigmatic
cases include so-called formal logic, in which it is as-
sumed that a theorem—such as mortal(socrates)—
is derived by an automatic inference regimen without
regard to the reference, truth, or even meaning of any
of its premises.

2. A closely allied grammatical or syntactic reading, illus-
trated in such a sentence as “inference rules are defined
in terms of the formal properties of expressions.” (Note
that whereas the antisemantical reading is negatively
characterized, this syntactic one has a positive sense.)

3. A reading meaning something like determinate or well-
defined—that is, as ruling out all ambiguity and vague-
ness. This construal turns out to be related to a variant
of the computationally familiar notion of digitality or
discreteness.

4. A construal of “formal” as essentially equivalent to
mathematical.

5. A reading that cross-cuts the other four: formality as
applied to analyses or methods, perhaps with a deriva-
tive ontological implication that some subject matters
(including computation?) are uniquely suited to such
analytic techniques.

The first two (antisemantical and syntactic) are often treated
as conceptually equivalent, but to do that is to assume that
a system’s syntactic and semantic properties are necessar-
ily disjoint—which is almost certainly false. The relationship
between the third (determinate) reading and digitality does
not have so much to do with what Haugeland (1982) calls

“first-order digitality”: the ordinary assumption that a system’s

a29

 The Foundations of Computing

 33

Draft Version 0.73 — 2014 · June · 1

states can be partitioned into a determinate set, such as that
its future behavior or essence stems solely from membership
in one element of that set, without any ambiguity or matter of
degree. Rather, vagueness and indefiniteness (as opposed to
simple continuity) are excluded by a second-order form of digi-
tality—digitality at the level of concepts, in the sense of there
being a binary “yes/no” fact of the matter about whether any
given situation falls under (or is correctly classified in terms
of) the given concept. And finally, the fourth view—that to
be formal has something to do with being mathematical, or
at least with being mathematically characterizable—occupies
something of an ontological middle-realm between the sub-
ject-matter orientation of the first three and the methodologi-
cal orientation of the fifth.

The ultimate moral for computer and cognitive science, I
argue, is similar to the claim made earlier about the seven con-
struals: not one of these readings of ‘formal’ correctly applies to
the computational case. It can never be absolutely proved that
computation is not formal, of course, given that the notion of
formality is not determinately tied down. What I am prepared
to argue (and do argue in the full analysis) is the following: no
standard construal of formality, including any of those enu-
merated above, is both (i) substantive and (ii) true of extant
computational practice. Some readings reduce to vacuity, or to
no more than physical realizability; others break down in in-
ternal contradiction; others survive the test of being substan-
tial, but are demonstrably false of current systems. In the end,
one is forced to a sixth major conclusion:

c6. Computation is not formal.

It is an incredible historical irony: the computer, darling child
of the formal tradition, has outstripped the bounds of the very
tradition that gave rise to it.

a30

34

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

 7 The Ontological Wall
Where does all this leave us? It begins to change the char-
acter of the project. It is perhaps best described in personal
terms. Over time, investigations of the sort described above,
and consideration of the conclusions reached through them,
convinced me that none of the reigning theories or construals
of computation, nor any of the reigning methodological atti-
tudes towards computation, will ever lead to an analysis strong
enough to meet the three criteria laid down at the outset.

It was not always that way. For the first twenty years of the
investigation I remained:

1. In awe of the depth, texture, scope, pluck, and impact
of computational practice;

2. Critical of the inadequate state of the current theoreti-
cal art;

3. Convinced that a formal methodological stance stood
in the way of getting to the heart of the computational
question; and

4. Sure in my belief that what was needed, above all else,
was a non-formal—i.e., situated, embodied, embedded,
indexical, critical, reflexive, all sorts of other things (it
changed, over the years)—theory of representation
and semantics, in terms of which to reconstruct an ad-
equate conception of computing.

In line with this metatheoretic attitude, as the discussion this
far will have suggested, I kept semantical and representational
issues in primary theoretical focus. Since, as indicated in the
last section, the official “Theory of Computation,” derived
from recursion and complexity theory, pays no attention to
such intentional problems, to strike even this much of a se-
mantical stance was to part company with the center of gravity
of the received theoretical tradition.

You might think that this would be conclusion enough.

a31

 The Foundations of Computing

 35

Draft Version 0.73 — 2014 · June · 1

And yet, in spite of the importance and magnitude of these
intentional difficulties, and in spite of the detailed conclu-
sions suggested above, I have gradually come to believe some-
thing much more sobering: a conclusion that, although not
as precisely stated as the foregoing, is if anything even more
consequential:

c7. The most serious problems standing in the way of
developing an adequate theory of computation are as
much ontological as semantical.

It is not that computation’s semantic problems go away; they
remain as challenging as ever. It is just that they are joined—
on center stage, as it were—by even more demanding prob-
lems of ontology.

Except that to say “joined” is misleading, as if it were a mat-
ter of simple addition—as if now there were two problems
on the table, whereas before there had been just one. No such
luck. The two issues (representation and ontology) are inextri-
cably entangled—a fact of obstinate theoretical and metatheo-
retical consequence.

A methodological consequence will illustrate the problem.
Especially within the analytic tradition (by which I mean to
include not just analytic philosophy, e.g., of language and mind,
but most of modern science as well, complete with its formal/
mathematical methods), it is traditional to analyze semantical
or intentional systems, such as computers or people, under the
following presupposition: (i) that one can parse or register the
relevant theoretical situation in advance into a set of objects,
properties, types, relations, equivalence classes, and so on (e.g.,
into people, heads, sentences, data structures, real-world refer-
ents, etc.)—as if this were theoretically innocuous—and then
(ii), with that ontological parse in hand, go on to proclaim
this or that or the other thing as an empirically justified result.
Thus for example one might describe a mail-delivering robot

a32

36

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

by first describing an environment of offices, hallways, people,
staircases, litter, and the like, through which the robot is sup-
posed to navigate, and then, taking this characterization of its
context as given, ask how or whether the creature represents
routes, say, or offices, or the location of mail delivery stations.

If one adopts a reflexively critical point of view, however,
as I have systematically been led to do, one is led inexorably
to the following conclusion: that, in that allegedly innocent
pretheoretical “set-up” stage, one is liable, even if unwittingly,
to project so many presuppositions, biases, and advance “clues”
about the “answer,” and in general to so thoroughly prefigure
the target situation, without either apparent or genuine justi-
fication, that one cannot, or at least should not, take any of the
subsequent “analysis” terribly seriously. It is a general problem
that I have elsewhere labeled preemptive registration.35 It is
problematic not just because it rejects standard analyses, but
because it seems to shut all inquiry down. What else can one
do, after all? How can one not parse the situation in advance
(since it will hardly do to merely whistle and walk away)? And
if, undaunted, one were to go ahead and parse it anyway, what
kind of story could possibly serve as a justification? It seems
that any conceivable form of defense would devolve into an-
other instance of the same problem.

In sum, the experience is less one of facing an ontologi-
cal challenge than of running up against an ontological wall.
Perhaps not of slamming into it, at least in my own case; rec-
ognition dawned slowly. But neither is the encounter exactly
gentle. It is difficult to exaggerate the sense of frustration that
can come, once the conceptual fog begins to clear, from seeing
one’s theoretical progress blocked by what seems for all the
world to be an insurmountable metaphysical obstacle.

Like many of the prior claims I have made, such as that all
extant theories of computation are inadequate to reconstruct
practice, or that no adequate conception of computing is for-

35. Smith (in press). «??»

a33

 The Foundations of Computing

 37

Draft Version 0.73 — 2014 · June · 1

mal, this last claim, that theoretical progress is stymied for lack
of an adequate theory of ontology, is a strong statement, in
need of correspondingly strong defense. Providing that de-
fense is one of the main goals of aos. In my judgment, to make
it perfectly plain, despite the progress that has been made so
far, and despite the recommended adjustments reached in the
course of the seven specific analyses enumerated above, we are
not going to get to the heart of computation, representation,
cognition, information, semantics, or intentionality, until the
ontological wall is scaled, penetrated, dismantled, or in some
other way defused.

One reaction to the wall might be depression. Fortunately,
however, the prospects are not so bleak. For starters, there is
some solace in company. It is perfectly evident, once one raises
one’s head from the specifically computational situation and
looks around, that computer scientists, cognitive scientists,
and artificial intelligence researchers are not the only ones
running up against severe ontological challenges. Similar con-
clusions are being reported from many other quarters. The
words are different, and the perspectives complementary, but
the underlying phenomena are the same.

Perhaps the most obvious fellow travelers are literary crit-
ics, anthropologists, and other social theorists, vexed by what
analytic categories to use in understanding people or cultures
that, by such writers’ own admission, comprehend and con-
stitute the world using concepts alien to the theorists’ own.
What makes the problem particularly obvious, in these cases,
is the potential for conceptual clash between theorist’s and
subject’s world view—a clash that can easily seem paralyzing.
One’s own categories are hard to justify, and reek of imperial-
ism; it is at best presumptuous, and at worst impossible, to try
to adopt the categories of one’s subjects; and it is manifestly
impossible to work with no concepts at all. So it is unclear how,
or even whether, to proceed.

a34

38

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

But conceptual clash, at least outright conceptual clash, is
not the only form in which the ontological problem presents
itself. Consider the burgeoning interest in self-organizing
and complex systems mentioned earlier, currently coalescing
in a somewhat renegade subdiscipline at the intersection of
dynamics, theoretical biology, and artificial life. This com-
munity debates the “emergence of organization,” the units on
which selection operates, the structure of self-organizing sys-
tems, the smoothness or roughness of fitness landscapes, and
the like. In spite of being disciplinarily constituting, however,
these discussions are conducted in the absence of adequate
theories of what organization is, of what a “unit” consist in, of
how “entities” arise (as opposed to how they survive), of how it
is determined what predicates should figure in characterizing
a fitness landscape as rough or smooth, and so on. The onto-
logical lack is to some extent recognized in increasingly vocal
calls for “theories of organization.”36 But the calls have not yet
been answered.

Ontological problems have also plagued physics for years, at
least since foundational issues of interpretation were thrown
into relief by the developments of relativity and quantum me-
chanics (including the perplexing wave-particle duality, and
the distinction between “classical” and “quantum” world-views).
They face connectionist psychologists, who, proud of having
developed architectures that do not rely on the manipulation
of formal symbol structures encoding high-level concepts, and
thus of having thereby rejected propositional content, are nev-
ertheless at a loss as to say what their architectures do repre-
sent. And then of course there are communities that tackle
ontological questions directly: not just philosophy, but fields
as far-flung as poetry and art, where attempts to get in, around,
and under objects have been pursued for centuries.

So there are fellow-travelers. But no one, so far as I know,

36. A theory of organization is essentially applied metaphysics. a36

a35

 The Foundations of Computing

 39

Draft Version 0.73 — 2014 · June · 1

has developed an alternative ontological/metaphysical pro-
posal in sufficient detail and depth to serve as a practicable
foundation for a revitalized scientific practice. Unlike some
arguments for realism or irrealism, unlike some briefs pro or
con this or that philosophy of science, and unlike as well the
deliberations of science studies and other anthropological and
sociological and historical treatises about science, the task I
have in mind is not the increasingly common meta-metaphys-
ical one—of arguing for or against a way of proceeding, if
one were ever to proceed, or arguing that science proceeds in
this or that way. Rather, the concrete demand is for a detailed,
worked-out account—an account that “goes the distance,” in
terms of which accounts of particular systems can be formu-
lated, and real-world construction proceed.

For this purpose, with respect to the job of developing an
alternative metaphysics, the computational realm has unparal-
leled advantage. Midway between matter and mind, compu-
tation stands in excellent stead as a supply of concrete cases
of middling complexity—what in computer science is called
an appropriate “validation suite”—against which to test the
mettle of specific metaphysical hypotheses. “Middling” in the
sense of neither being so simple as to invite caricature, nor so
complex as to defy comprehension. It is the development of
a laboratory of this middling sort, half-way between the fric-
tionless pucks and inclined planes of classical mechanics and
the full-blooded richness of the human condition, that makes
computing such an incredibly important stepping-stone in in-
tellectual history.

Crucially, too, computational examples are examples with
which we are as much practically as theoretically familiar (we
build systems better than we understand them). Indeed—and
by no means insignificantly—there are many famous divides
with respect to which computing sits squarely in the middle.

a38

a37

40

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

 8 Summary
Thus the ante is upped one more time. Not only must an ad-
equate account of computation (any account that meets the
three criteria with which we started) include a theory of se-
mantics; it must also include a theory of ontology. Not just
intentionality is at stake, in other words; so is metaphysics.
But still we are not done. For on top of the foregoing strong
conclusions lies an eighth one—if anything even stronger:

c8. Computation is not a subject matter

In spite of everything I said about a comprehensive, empiri-
cal, conceptually founded “theory of computing,” that is, and
in spite of everything I myself have thought for twenty years,
I no longer believe that there is a distinct ontological category
of computing or computation, one that will be the subject
matter of a deep and explanatory and intellectually satisfy-
ing theory. Close and sustained analysis, that is, suggests that
the things that Silicon Valley calls computers, the things that
perforce are computers, do not form a coherent intellectually
delimited class. Computers turn out in the end to be rather
like cars: objects of inestimable social and political and eco-
nomic and personal importance, but not in and of themselves,
qua themselves, the focus of enduring scientific or intellectual
inquiry—not, as philosophers would say, natural kinds.

Needless to say, this is another extremely strong claim—
one over which some readers may be tempted to rise up in
arms. At the very least, it is easy to feel massively let down,
after all this work. For if I am right, it is not just that we cur-
rently have no satisfying intellectually productive theory of
computing, of the sort I initially set out to find. Nor is it just
that, through this whole analysis, I have failed to provide one.
It is the even stronger conclusion that such projects will al-
ways fail; we will never have such a theory. So all the previ-
ous conclusions must be revised. It is not just that a theory of

a39

 The Foundations of Computing

 41

Draft Version 0.73 — 2014 · June · 1

computation will not supply a theory of semantics, for example,
as Newell has suggested; or that it will not replace a theory of
semantics; or even that it will not depend or rest on a theory
of semantics, as intimated at the end of §4. It will do none of
these things because there will be no theory of computation at all.

Given the weight that has been rested on the notion of
computation—not just by me, or by computer science, or even
by cognitive science, but by the vast majority of the surround-
ing intellectual landscape—this might seem like a negative
conclusion. (Among other things, you might conclude I had
spent these thirty years in vain.) But in fact there is no cause
for grief; for the negativity of the judgment is only superficial.
In fact I believe something almost wholly opposite, which we
can label as a (final) conclusion in its own right:

c9. The superficially negative conclusion (that computing
is not a subject matter) makes the twentieth-century
arrival of computation onto the intellectual scene a
vastly more interesting and important phenomenon than
it would otherwise have been.

On reflection, it emerges that the fact that neither comput-
ing nor computation will sustain the development of a theory
is by far the most exciting and triumphal conclusion that the
computer and cognitive sciences could possibly hope for.

Why so? Because I am not saying that computation-in-the-
wild is intrinsically a-theoretical—and thus that there will be
no theory of these machines, at all, when day is done. Rather,
the claim is that such theory as there is—and I take it that
there remains a good chance of such a thing, as much as in
any domain of human activity—will not be a theory of com-
putation or computing. It will not be a theory of computation
because computers per se, as I have said, do not constitute a
distinct, delineated subject matter. Rather, what computers
are, I now believe—and what the considerable and impressive

42

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

body of practice associated with them amounts to—is neither
more nor less than the full-fledged social construction37 and de-
velopment of intentional artifacts. That means that the range of
experience and skills and theories and results that have been
developed within computer science—astoundingly complex
and far-reaching, if still inadequately articulated—is best un-
derstood as practical, synthetic, raw material for no less than
full theories of causation, semantics, and ontology—that is,
for metaphysics full bore.

Where does that leave things? Substantively, it leads in-
exorably to the conclusion that metaphysics, ontology, epis-
temology, and intentionality are the only integral intellectual
subject matters in the vicinity of either computer or cognitive
science. Methodologically, it means that our experience with
constructing computational (i.e., intentional) systems may
open a window onto something to which we would not oth-
erwise have any access: the chance to witness, with our own
eyes, how intentional capacities can arise in a “merely” physical
mechanism.

It is sobering, in retrospect, to realize that our preoccupa-
tion with the fact that computers are computational has been the
major theoretical block in the way of our understanding how
important computers are. They are computational, of course;
that much is tautological. But only when we let go of the con-
ceit that that fact is theoretically important—only when we let
go of the “c-word”—will we finally be able to see, without dis-
traction, and thereby, perhaps, at least partially to understand,
how a structured lump of clay can sit up and think.

And so that, for a decade or so, has been my project: to take,
from the ashes of computational critique, enough positive
morals to serve as the inspiration, basis, and testing ground
for an entirely new metaphysics. A story of subjects, a story of
objects, a story of reference, a story of history.

37. Social construction not as the label for a metaphysical stance, but in
the literal sense that we build them.

a40

 The Foundations of Computing

 43

Draft Version 0.73 — 2014 · June · 1

For sheer ambition, physics does not hold a candle to com-
puter or cognitive—or rather, as we should now call it, in order
to recognize that we are dealing with something on the scale
of natural science—epistemic or intentional science. Hawking
(1988) and Weinberg (1994) are wrong. It is we, not the physi-
cists, who must develop a theory of everything.

44

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

 Annotationsv

a1 ·1/1/1 The originally published version of this paper1.5 was preceded with
the following Editor’s Note:2

“What is computation? Not what current theories of computa-
tion say it is, argues Smith, as they one way or another ‘implicitly
rely, without explanation, on such substantial, recalcitrant notions
as representation and semantics,’ possibly even suggesting compu-
tation as a candidate for a theory of those very notions. Smith dis-
tinguishes various accounts of computation, originating in different
intellectual areas and aiming at different goals. For example, there
is the construal of computation as ‘formal symbol manipulation,’
embracing the idea of a machine manipulating symbolic or (at least
potentially) meaningful expressions without regard to their seman-
tic content. Or there is computation seen as the ‘execution of an
algorithm,’ or the mathematical notion of ‘effective computability,’
Additional notions of computation include ‘digital state machine,’
‘information processing,’ and ‘physical symbol system.’ All of these
construals fail to meet at least one of three criteria, which a com-
prehensive theory has to satisfy, according to Smith. The first, an
‘empirical’ criterion, requires theories of computation to do justice
to real life computing, that is, to account for and be able to explain
programs like Microsoft Word, what it does, how it is used, and so
on. The second is a conceptual criterion, which requires a theory
of computation to ‘discharge all intellectual debts’ such as clari-
fying the relation between computation and various other notions
it depends on or is related to. Finally, the third criterion concerns
computation’s role in computationalism in that it requires a theory
of computation also to be an intelligible foundation for the formu-
lation of the computational theory of mind (whether the latter is
true or false is not at stake here). Computation, Smith suggests, is
intrinsically intentional—this was what made computation an at-
tractive aspect of computationalism in the first place. Yet, it is this
intentional or semantic character of computation that is disguised
by the widely held, pretheoretic conception of computation as be-
ing entirely formal. Once the involved notion of formality is scruti-
nized, however, it becomes clear that computation cannot be cor-

1. References are in the form page/paragraph/line. See the sidebar on p. 45.
1.5. Scheutz (2008), pp. 23–582.
2. Ibid., p. 23–24.

 The Foundations of Computing

Draft Version 0.73 — 2014 · June · 1

 45

rectly classified by any reading of ‘formal,’ and hence the semantic
character of computation is in need of explanation. So, rather than
providing one, computation will have to wait for the development
of a satisfactory theory of intentionality. But Smith does not stop

Annotation Text References

Text references are in the form page/paragraph/line, with ranges (of
any type) indicated as α:β. Thus in a reference x/y/z:

1. x is the page number
2. y is the paragraph number

a. y omitted ⇒ no ¶; if z present, zth line on p. x; else all p. x
b. y = 0 ⇒ partial ¶ at top of p. (cont’d from previous p.)
c. y > 0 ⇒ yth paragraph starting on p. x
d. y < 0 ⇒ count from bottom (-1 is last ¶ starting on p.)
e. Footnotes indicated as paragraph n1, n2, etc.
f. Section headings are not considered ¶s, but indented points

are (e.g., bulleted or numbered).
g. Tables, figures, etc., not considered ¶s; should be referred to

explicitly.
3. z is the line number

a. z omitted ⇒ no line no.; if y present, whole ¶; else whole p.
b. z > 0 ⇒ if y present, zth line in ¶; else zth line on p.
c. z < 0 ⇒ count from bottom of ¶ or p. (-1 is last line)
d. Example: 8/-1/-3 means 3rd-from-last line on p. 8, even if last

¶ (-1) continues onto next p. (9/0/...).
4. Ranges: x1:x2, y 1:y2, and z1:z2 mean from x1 to x2, etc. (pages, ¶s, or

lines). Missing values default from the left:
a. 23/4/5:7 ⇒ lines 5 through 7 in 4th ¶ on p. 23
b. 23/2/6:4/3 ⇒ 6th line of 2nd ¶ through 3rd line of 4th ¶ on p. 23
c. 23/1:24/7 ⇒ 1st ¶ on p. 23 through 7th ¶ on p. 24

d. 127/2/9:128/4 would mean 9th line of 2nd ¶ on p. 127 through
4th line of 128th ¶—probably not what was intended. To sig-
nify 9th line of 2nd ¶ on page 127 through 4th ¶ on p. 128, use
127/2/9:128/4/.

e. 127//-9:128//4 ⇒ 9th line from bottom of p. 127 through 4th
line of p. 128

46

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

here. Instead he calls into question the whole set of ontological as-
sumptions underlying computational analyses, culminating in his
claim that computation is not a subject matter. Hence, although a
satisfactory analysis of computation will have to include a theory
of semantics and a theory of ontology, we will never have a ‘theory
of computing,’ because computation does not constitute a distinct
ontological or intellectual category. To some this may seem a nega-
tive conclusion, but for Smith it opens up the possibility of seeing
computers as embedded in a rich practice, which might enable
us to see ‘how intentional capacities can arise in a mere physical
mechanism.’”

a2 ·1/−1/2:3 See fn. 3, p. ·2.
a3 ·2/1/−1 The ‘cost’ metaphor is from Latour («ref»); see also o3, ch. 2.
a4 ·2/2 The cognitive criterion would have been more clearly explained as

requiring, of any candidate theory of computation, that it provide a
reflexively tenable foundation for the computational theory of mind.
See the discussion at ·4/−1:·6/0, and also annotation «…» (p. «…»).

a5 2/n2 It is unfortunately common, in philosophy of mind, to take the
phrase ‘computational theory of mind’ to imply cognitivism, based
on the combination of two mistaken ideas: (i) that computation
is necessarily formal symbol manipulation (just one construal of
computing; see §3, pp. …ff), and (ii) that formal symbol manipula-
tion in turn implies a syntactically and semantically compositional

“conceptualist” architecture.
a6 2/n3/2 Of the items in this list, the notion of implementation deserves special

mention. While it is no requirement on a comprehensive theory of
computing that it provide an explanation of any particular imple-
mentation, the basic idea of implementation is so fundamental to
computational practice that a comprehensive theory needs to pro-
vide an explanation of what it is for α to be an implementation of
β—the general constraints that such an α must meet, the relation
of implementation to more general issues of ontological or mereo-
logical constitution (type- and token-reduction, supervenience), etc.
Among the issues that would need to be addressed, at least three
stand out: (i) whether or not an implementation relation can be ad-
equately characterized in purely physical/causal terms; (ii) whether
the conditions on implementation are purely behavioural, or instead
implicate issues of internal constitution or structure; and/or (iii),

<= check

 The Foundations of Computing

Draft Version 0.73 — 2014 · June · 1

 47

3. See also aos, especially Volume iii, where the history of this parting of intel-
lectual ways is identified and historically disentangled.

related but not identical to the others, whether, if α implements β,
the relation between α and β is in any constitutive or necessary way
intentional (whether α must be able to be semantically interpreted
in the same way as β, whether implementation bears any concep-
tual or logical relation to representation, etc.). See «…15/0 …» for a
suggestion that implementation is, in fact, an intentional relation,
though I make no explicit argument there in support of such a view.

See ch. 5 for a challenging but nevertheless illustrative case of
implementation, and §… of ch. 2 for a discussion of the objectifyiing
nature of implementation and its relation to reflection.

a7 · /n7 I have no idea why, though it adverts to its uses in everyday language
and in critical theory, this footnote does not even mention the un-
derstanding of ‘interpretation’ that permeates logic and philosophy
of language. It is the latter which has been in primary focus in my
analysis of computation since the beginning: the idea that the “in-
terpretation” of a sign or signifier (name, variable, etc.) is what it
semantically signifies, stands for, denotes, represents, etc.

As suggested in the Introduction, and argued in more detail in
ch. 2 (see especially §«…»),3 the computational understanding of
interpretation has increasingly parted company with the classical
semantical notion, starting as early as Turing’s original 1937 paper,
while—confusingly—retaining largely overlapping vocabulary. The
computational notion is by and large constrained to be operation-
al and mechanistic, whereas no such condition impinges, or could
impinge, on the general semantical notion of naming. See also fn.
20, p. ·16, and the extensive discussion of the interpretation of pro-
grams in ch. 2.

a8 ·6/0/−4:−3 Reflexive integrity is discussed at length in aos, but in essence it is a
simple idea. If a theory is reflexive (applicable, among other things,
to itself), then it is an elementary requirement of theoretical integ-
rity that whatever the theory claims about theories should be exhib-
ited by the theory making that claim. See fn. 9 on p. 5. Similarly, if it were
to be argued, for example, in some theory θ, that theories and the
understandings they undergird are never purely rational, but must
inevitably include an emotional/affective component, then on pain
of reflexive integrity the author of θ should be ready to admit that θ
itself must have an emotional/affective dimension. And so on.

48

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

What makes reflexive integrity challenging is not its internal log-
ic, which is relatively straightforward, but the fact that theoretical
advances in reflective analyses can lead to discontinuities in under-
standing, requiring something of an epistemic (if not Kierkegaard-
ian) “leap” to embrace. The situation is analogous (though by no
means the same as) making a shift from realism to a strong version
of constructivism: theories of both realism and constructivism will
differ, based on whether they in turn are understood realistically or
constructively, implying that the epistemic process of shifting from
a realist to a construvist point of view requires an analogous sort of
epistemic leap.

a9 ·8/−2 It is not evident that algorithm execution (alg) and rule-following
(rf) should be conflated in the way indicated here—though neither
of the two terms is clear enough in either popular or technical us-
age to make distinguishing them straightforward. What matters is
not the difference between the labels, both of which are used am-
biguously, but a critical distinction, applicable in both cases, and
mentioned briefly in ·12/1, between: (i) a conception with both me-
chanical/causal and semantic/intentional dimensions, according to
which the behaviour arises from some sort of explicit mechancial

“following” of a concrete, physically-effective representation or en-
coding of a rule or set of steps, in such a way that the resulting
behaviour semantically satisfies—i.e., normatively accords with the
meaningful content of—the rules or set of steps therein represented;
and (ii) a weaker variant, with neither causal nor representational
implications, according to which the resulting exhibited behaviour
merely honors or satisfies the given rule or rules, or exhibits behavior
that accords with that which is algorithmically specified (with no
implication that its doing so results from those rules being repre-
sented or expressed).

Because of the mechanical connotations of the term ‘execution,’
the former (stronger) version is probably the default reading of “al-
gorithm execution.” The latter (weaker) interpretation may be more
often associated with the term “rule-following,” but the difficulty
with it is that it is manifestly too weak to serve as a substantial con-
strual of computation. All scientifically described phenomena, at
least arguably, are rule-following in this weak sense. Famously, for
example, at least to a first order of approximation, the planets and

 The Foundations of Computing

Draft Version 0.73 — 2014 · June · 1

 49

4. Whether computers are regular is not a question to which the answer is obvi-
ous a priori—or, for that matter, a posteriori.
5. o3/83/0/−3:−1. As o3 was being written, a printing error caused a draft, dis-
tributed to my students for discussion, to read: “And no, it must not be grounded
in __, for any __.” I was struck that the incorrect version seemed to convey the
intended meaning better than the ‘α’ version, and so since then I have tended
to rely on it in talks, teaching, etc.
6. The challenge is that the notions of connection and disconnection on which
o3 relies, and to some extent the (perhaps entailed) notions of proximity and
distance, can be challenged as playing exactly the sort of “foundational” role
that are rejected by the irreduction mandate. Several things could be said in
response: (i) that the entire o3 proposal is intended at best to be a story of
all that there is, not the story, implying that other stories might have equal or
comparable merit, collectively triangulating on what is ultimately (but inef-
fably) the case, as suggested in the final figure in the book (o3/375/fig 12·1);
(ii) that the epistemological aspect of the vision, by no means independent

stars behave in ways that honor Newton’s rules of gravity and mo-
tion, and thus “follow those rules” in that weak sense—but are in no
way rendered computational by that fact. That is not to say that the
weak characterization is empty; it remains debatable whether it can
be discharged as fully ontological, for example, or whether it bears
an epistemic or intentional taint in virtue of the idea of “honouring”
or “manifesting behaviour in accord with.” Nevertheless, to endorse
such a weak conception of rule-following as a constitutive characteriza-
tion of computing would evacuate the notion of substance. Were it
true, the resulting computational theory of mind would amount to
no more than a thesis that the mind is, as it were, “regular”—which
may or may not be true, but is a different question from whether we
are computers.4

a10 ·8/−1/2:3 There is some question of whether this should be generalized from
“mathematical function” to “mathematically modeled function.” The
issue is addressed in aos; cf. also ch. 2, §…, and ch. 12.

a11 ·8/n12 Cf. ch. 3 of o3 (entitled “Irreduction”), especially its final four
sentences:

“Yes, we need something that will satisfy our yearning for
foundations. And no, it must not be grounded in α, for any α.5 But
there is another possibility. Why can we not just be grounded,
simpliciter?”

The metaphysical proposal made in o3 represents a (not entirely
successful6) attempt to paint a picture of world that meets this cri-

50

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

terion: of being grounded without being grounded in any α. Or, as
one might put it, it strives to depict a world with foundation but not
foundations.

a12 ·10/s−2/−2:−1 Note that Agre’s definition eviscerates the computational theory of
mind of any substance—or rather, strictly speaking, renders it false,
since our minds were not artificially constructed. (The point is that
Agre places no ontological conditions on what it is to be a computer.
The project of artificial intelligence will thus succeed, according to
Agre, whenever we learn how to construct minds, whatever they are.)

I, too, will argue that computation is not ontologically distinct;
see c8 in §8, p. …, below, though our conclusions differ in both sub-
stance and emphasis. Agre seems to favor retaining the word ‘com-
putation,’ but using it for physically constructed artefacts (whether
he would countenance log cabins and oil refineries and the like as
computers because they are physical artefacts arising out of human
material implementation is not clear, though it would strike me as
perverse, to say nothing of being discrepant with common usage).
My own recommendation, as suggested in §8, is that—at least for
theoretical purposes—we dispense with the term ‘computation’
altogether.

a12.5 ·11/1 See annotation «a9» at ·….
a13 ·12/1/−2:−1 The term ‘information highway’ is long since passé, and by now

(2014) at best sounds quaint; the same fate may soon befall ‘infor-
mation age.’ Other informational framings, however—the idea that
the internet is an information resource, that information forms the
substance of the digitally-mediated economy, etc.—for now at least
remain strong. See aos Volume iv.

a14 ·12/−1/5:8 The historical analysis of information as nineteenth-century no-
tion, and its characterization as a publicly-accessible, authoritative,
somewhat corpuscular commodity, is due to Nunberg.7

of its ontological dimension, is framed so as to support unliimited challenge,
revision, etc., so that even if connection and disconnection do tread on the
forbidden ‘α’ (or ‘__’) territory, that does not render the notions either immu-
table or immune to challenge; and (iii) that—which is especially noteworthy in
the present content—the notion of connection is aimed squarely at what the
notion of effectiveness means in computer science, and so is far from arbitrary.
Nevertheless, what o3 failed to do, which even by its own lights it should have,
is to “derive” connection and disconnection from a careful process of imma-
nent induction.
7. «…ref…»

4

 The Foundations of Computing

Draft Version 0.73 — 2014 · June · 1

 51

a15 ·12/−1/−4: Alas the grammatical problems with this sentence are in the origi-
 ·13:0 nal. At a minimum, clauses (ii) and (iii) should begin with ‘as in.’
a16 ·13/−1/3:4 This claim illustrates the point mentioned in §… of the Introduction,

and explored in some detail in ch. 2: I initially felt that the most
dominant problems among all theoretical difficulties facing an ac-
count of computing were semantical—in spite of the very strong on-
tological conclusions reached below (e.g., in claims c…-c…, q.v.).

a17 ·14/0/−4 Should ‘the cognitivist hypothesis,’ in this sentence, be replaced
with ‘the computational theory of mind’? As noted in fn. 2 (p. ·2)
cognitivism, at least as that term is used in cognitive science and
ai,8 is a narrower thesis than the idea that minds are computers,
suggesting a positive answer. Or at least that is so if one accepts
the formal symbol manipulation (fsm) construal of computation.
Someone who embraces a non-intentional characterization of
computing might endorse a computational theory of mind with-
out believing that any intentional properties bear on the question of
whether or not minds are computers (since computing, according
to them, need not have any such properties).9 While reading this
sentence in terms of a cognitivist conception is undoubtedly too
narrow, therefore, broadening it to an unrestricted computational
theory of mind would be too wide.10 (cont’d)

Similar considerations apply to the use of the term ‘cognitivist’ in
the first sentence of the subsequent paragraph (15/0/1).

a18 ·15/−1/−6:−3 Cf. the discussion of overlapping technical vocabularies in §… of the
Introduction, p. ….

8. I.e., when the conceptualist or propositional ingredients taken to be con-
stitutive to mind as assumed to be implemented in something like a composi-
tional formal symbol system, as in formal logic.
9. It may not seem quite entailed by a non-intentional construal of computing
that no intentional properties can bear on the question of whether people
are computational, since the computational theory of mind inevitably places
additional constraints, having to do with what kind of computers people are.
As explained in «…», however, those additional constraints should be compu-
tational in nature, which if computation is held to be non-intentional would
block intentional properties entering at this stage.
10. Someone who embraces a non-intentional construal of computing, such
as effective computability (ec) or digital state machines (dsm), owes us an
explanation of why we should have any in-advance sympathy for the thought
that we are computers. It is not that such an intuition might not be forthcom-
ing; it just cannot lean on the fact that “we, too, deal with representations,
symbols, meaning, information, and the like.”

52

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

a18.5 ·16/n20 Ch. 2 contains a much more extensive analysis of the issue discussed
in this note.

a19 §5a For more on formal symbol manipulation (fsm), the topic of this
 (·18/−1:·26/3) subsection, see aos Volume ii, devoted in its entirety to an analysis

of this construal.
a20 ·19/1/−7:−4 Some might argue that no form of relationality could be intrinsic

to intentionality, on the grounds that relational properties are nec-
essarily extrinsic, and thus not intrinsic to anything. But the argu-
ment is invalid, trading on ambiguities in the meaning of ‘intrinsic.’
Relationality could still be intrinsic to intentionality in the sense of
being essential or necessary to it. All that follows, if nothing can be
intentional without exhibiting relational properties, is that being in-
tentional must not be an intrinsic property in the classic sense.

The point grows complex only when one attempts to identify
what it is that being intentional is not intrinsic to. Assume, uncon-
troversially, that it is essential to a thought’s being a thought that it
be intentional, and also, more controversially (as suggested here),
that it is essential to something’s being intentional that it exhibit
relational properties. Are we to conclude that being a thought is not
an intrinsic property of…the thought? Not quite—or anyway that
would be an infelicitous way to put the point. Strictly speaking, it
would be better to say something along the following lines: that be-
ing a thought is not an intrinsic property of that patch of reality that, if
one were to advert to relational facts, could correctly be labeled “a thought.”

There is no fundamental problem with this line of reasoning—at
least to the extent that the words intrinsic, extrinsic, relationality, etc.,
mean anything. If one believes in relationality, that is, then one
should recognize intentionality as being necessarily relational.

I say “if one believes in relationality” because I myself do not—in
part because, as argued in o3, I do not even believe that “being an
object” is an intrinsic property of…objects. Except, as recommend-
ed above, if we are to speak strictly, then we should say: of those
patches of reality that, if one were to permit adversion to relational facts, could
correctly be labeled ‘objects.’ But the verbal awkwardness is telling—and
suggestive of why the whole intrinsic/extrinsic vocabulary should be
set aside. If not even an object’s being the object that it is is an intrinsic
fact about it, it is murky to know what it would mean to claim that
some other property p is intrinsic to it.

 The Foundations of Computing

Draft Version 0.73 — 2014 · June · 1

 53

 • • •
Arcana aside, a serious point underlies these deliberations. It
is a major theme of both o3 and aos: (i) that some form of
disconnection, involving a lack of (or weakness in) effective or
mechanical coupling, is essential to intentionality; (ii) that the
official theory of computation is a theory of effective connection
or coupling;11 and (iii) that “effective” is the only legitimate
substance to (i.e., only grain of truth to be found in) the “syn-
tactic” or positive reading of ‘formal,’ as that term is used in the
formal symbol manipulation (fsm) construal of computation.
It follows that there cannot be a mechanical or causal theory
(or formal in the “syntactic” sense) theory of intentionality or
computing. Or to put the point more broadly: neither inten-
tionality nor computing, in my view, can be understood from
within the mechanical restriction (cf. ch. 1, §…).

a21 ·23/1/8:9. See ch. 2 (especially §s …) for an extended discussion of whether
programs’ constituent symbols are viewed, or should be viewed: (i)
as designating entities in a programs’ task domain—which will often,
though not always, be external to the computer (salaries, orbits,
people, etc.); or (ii) as designating internal entities—such as data
base entries, memory locations, etc. (entities that may, in turn,
represent or model those external real-world11.5 entities). The 2Lisp
and 3Lisp dialects, subject of chs. 3–5, take the former view; most of
computer science adopts the latter (hence the ‘arguably’).

a22 ·24/n28 These disciplinarily specific meanings of ‘transducer’ are yet another
 /3:6 instance of the cross-disciplinary terminological confusion dis-

cussed in §4 of the Introduction.
a23 ·25/1/9:11 Needless to say, which operations should count as “reference

crossing” (i.e., which operations mediate between a sign or symbol
and what it designates) depends on what one takes the designation
of that sign or symbol to be. The ambiguity about the semantics of
program symbols suggested above (cf. annotation a21, as well as
the extensive discussion in §… of ch. 2) shows not only that there is

11. See §5b, and especially c5 on p. ·29.
11.5. Computational internal entities are part of the real world, needless to
say; I use the term in the (regrettably) common sense only to make the point.

54

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

no agreement, but also that there has not needed to be any agreement on
the issue, underscoring the claim in the text that no computational-
ist has ever needed to distringuish computational operations that
do from those that do not cross such semantic boundaries. (See
also ch. 12.)

a24 ·25/1/13 Counting is an instance of a reference-crossing operation because
it takes as input an exemplified cardinality—an actual number of
entities (seven people, say)—and produces as output a symbol des-
ignating that cardinality (the numeral ‘7’, or the word ‘seven’). Cf.
aos, Volume ii.

a25 §5b For more on Turing machines, effective computability (ec), etc., see
 (·26/−2:·29/3) aos Volume iii, which consists of a detailed analysis of this second

construal.
a25.5 ·27/2/5:7 It is notable, and potentially distracting, that mathematical models

of computability differ from mathematical models of physical phe-
nomena in not being framed in terms of physical units. This fact
is superficially explained, I believe, by the fact that computational
regularities hold of physical arrangements more abstractly indi-
viduated than is typical in physical theory. Much more substantial,
however, is a profound and unresolved underlying issue: all theo-
retical results in computer science rest on a basis of a largely un-
recognized11.7 and wholly unexplicated individuation of discrete physical
states. It is this ontological parsing that allows the mathematics to
be erected without reference to specific physical quantity.

Evidence of the complexities and confusions that can result
from using non-standard state individuation are rampant in the
literature, and include Searle’s (second) argument against the plau-
sibility of strong artificial intelligence, Putnam’s claim that a rock
has the computational power of a Turing machine, etc.11.8 To my
knowledge, however, no one has yet proposed a satisfactory solu-
tion to the problem (though perhaps Gandy (19…) can be taken as
an early attempt). My own view is that state individuation is ulti-
mately a result of intentional processes of registration—a claim that
substantially upends prospects of naturalization.11.9

11.7. What is unrecognized is not the state individuation itself, but the fact that
it remains so theoretically unreconstructed.
11.8. Searle (19…), Putnam (19…).
11.9. See aos Volume iii for an extensive discussion of physical state individua-
tion, and o3 re the intentional nature of registration.

 The Foundations of Computing

Draft Version 0.73 — 2014 · June · 1

 55

a26 ·28/2/−3 While the popularity of Girard’s linear logic was distinctively in-
creasing when this paper was written (2001), it is unclear in 2014
that this is any longer so.

a27 ·31/2/8 See Dienes & Perner (1999) and Davies (2001, §6) for discussions of
different uses of the terms explicit and implicit, relating them to cor-
relative distinctions between and among: procedural vs. declara-
tive knowledge; conscious vs. unconscious knowledge; tacit forms
of knowing; actual expression or “direct statement” vs. functional
consequence, logical implicature, and/or conceptual presupposi-
tion; the availability or unavailability of a representation to be the
object of meta-level representation; etc. Within computer science,
perhaps the most common interpretation of the distinction has
to do with the computational cost of drawing an (explicit) con-
clusion: as Levesque famously put it (1984): “a sentence is explicitly
believed when it is actively held to be true by an agent and implicitly
believed when it follows from what is believed.”12 Using computa-
tional cost to distinguish waht is explicit from what is implicit is
also endorsed by Kirsh (1990), his classic paper on different uses of
the terms in cognitive science.

By and large, all these discussions take implicitness and explicit-
ness to be properties of representations—though what it is to repre-
sent is itself highly problematic. Thus Kirsch (1990, p. 347) suggests
that systems may sometimes know things without representing
them at all,13 much as other writers (e.g., Rosenschein 1985, Halp-
ern 1995) characterize computer systems as carrying information
and knowing things non-representaitonally. Nevertheless, even in
the case Kirsch cites, the overall focus remains representational.

a28 ·31/−1/−2:−1 Although the five readings of ’formal’ listed on p. ·32 are the ones
that have figured most prominently in the development of theoreti-
cal edifices, a number of more idiosyncratic suggestions arose in
the course of the interviews mentioned in note 33. One of the most
intriguing was a suggestion that ‘formal’ means authorized—as for
example in “a formal invitation from the White House.” The reso-

12. Emphases in the original. “Actively held to be true” means explicitly repre-
sented and functionally located in the appropriate way.
13. His example is of a vision system whose ability to derive 3d shapes from
stereo 2d images depends on a fact about the world that it “assumes” with-
out representing at all: that objects in the world change shape smoothly and
continuously.

56

Draft Version 0.73 — 2014 · June · 1

 The Foundations of Computing

nance between its evocative connotations and the privileged status
of formality in theoretical computer science is a little uncanny.

a29 ·32/3/3 The term ‘construal’ on this line (and also three lines further on, in
list item 4) should be replaced by ‘reading.’ I was not referring to
the seven “construals” of computation under theoretical scrutiny.

a30 ·33/1/7 The phrase “in the full analysis” is a reference to aos.
a31 ·34/1/2 By ‘personal’ here I mean approximately autobiographical, as is

common usage these days—i.e., as having to do with the author.
Today I would have instead used the term ‘individual,’ or rewritten
the sentence entirely in order to avoid the current (and unfortunate,
in my view) individualist and even egocentric connotations of the
term. We would do better, in my view, to retain ‘personal’ to mean
the opposite of ‘impersonal’—i.e., as having to with persons.

a32 35/−1/7 For a discussion of this use of the term ‘register’ see «ref Rehab» and
o3.

a33 ·36/1/10 I have come to prefer Cussin’s term ‘preemptive registration,’14 used
here, over ‘inscription error,’ the phrase I used in o3 for essentially
the same phenomenon. See in particular «o3; chapter…»

a34 37/−1/2 At the time this was written I knew little of cultural or critical theory,
or of science and technology studies (sts), or of feminist epistemol-
ogy, in all of which the impositional nature of concepts and catego-
ries has been the target of stinging analytic critique. Reference to
those literatures would have mitigated the need to advert solely to
conceptual clash as demonsrating the dangers of imposing a con-
ceptual frame on a subject matter. But the overall point would have
remained.

Cf., however, the discussion of the “metaphilosophical” orienta-
tion of many of the discursive traditions in §… of the Introduction.

a35 38/1/−5:−4 The primary concern I had in mind here had to do with what in the
Introduction I characterize as blanket mechanism—an uncritical as-
sumption that fitness landscapes, self-organizing systems, emergent
phenomena, etc., must be constituvely characterised in causal or
mechanistic terms—rather than, to take the evident contrast, refer-
entially, semantically, intentionally, and/or normatively.

a36 ·38/n36 Or as I have put it elsewhere «where?», “a theory of organization is
metaphysics with a business plan.”

14. «Ref…or at least explain».

 The Foundations of Computing

Draft Version 0.73 — 2014 · June · 1

 57

a37 ·39/0/3 Cf. the discussion of the limits of discursive critique in §… of the
Introduction.

[nb: the term ‘foundation’ on this line was misprinted as ‘foun-
dational’ in the original published version.]

a38 ·39/0/−4:−3 The aim of the fan calculus mentioned briefly in §… of the Introduc-
tion, is to serve as a substrate (a “kernel calculus,” in the terms of
§«…» of ch. 2) in terms of which to provide such a detailed account.
At least at the time of this writing, however, and in spite of a num-
ber of draft sketches and public talks, such a calculus remains more
dream than reality.

a39 ·40/−2/−1 Needless to say, instead of ‘natural kinds’ this should read “instanc-
es of a natural kind.”

a40 ·42/−1 The metaphysical sketch presented in o3 was exactly based on such
a project: to mine computational systems and experience in order
to envision (albeit sketchily) a metaphysical account of the world
adequate to their inclusion.

	IA · I · A · 01 (FOC) — Body (C.09 Web)
	IA · I · A · 01 (FOC) — Annotations (C.09 Web)

